Abstract
The large conductance voltage- and Ca2+-activated potassium (BK) channel has been suggested to play an important role in the signal transduction process of cochlear inner hair cells. BK channels have been shown to be composed of the pore-forming alpha-subunit coexpressed with the auxiliary beta1-subunit. Analyzing the hearing function and cochlear phenotype of BK channel alpha-(BKalpha-/-) and beta1-subunit (BKbeta1-/-) knockout mice, we demonstrate normal hearing function and cochlear structure of BKbeta1-/- mice. During the first 4 postnatal weeks also, BKalpha-/- mice most surprisingly did not show any obvious hearing deficits. High-frequency hearing loss developed in BKalpha-/- mice only from approximately 8 weeks postnatally onward and was accompanied by a lack of distortion product otoacoustic emissions, suggesting outer hair cell (OHC) dysfunction. Hearing loss was linked to a loss of the KCNQ4 potassium channel in membranes of OHCs in the basal and midbasal cochlear turn, preceding hair cell degeneration and leading to a similar phenotype as elicited by pharmacologic blockade of KCNQ4 channels. Although the actual link between BK gene deletion, loss of KCNQ4 in OHCs, and OHC degeneration requires further investigation, data already suggest human BK-coding slo1 gene mutation as a susceptibility factor for progressive deafness, similar to KCNQ4 potassium channel mutations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.