Abstract

The α2-adrenoceptors regulate the sympathetic nervous system, controlling presynaptic catecholamine release. However, the role of the α2-adrenoceptors in cutaneous wound healing is poorly understood. Mice lacking both the α2A/α2C-adrenoceptors were used to evaluate the participation of the α2-adrenoceptor during cutaneous wound healing. A full-thickness excisional lesion was performed on the dorsal skin of the α2A/α2C-adrenoceptor knockout and wild-type mice. Seven or fourteen days later, the animals were euthanized and the lesions were formalin-fixed and paraffin-embedded or frozen. Murine skin fibroblasts were also isolated from α2A/α2C-adrenoceptor knockout and wild-type mice, and fibroblast activity was evaluated. The in vivo study demonstrated that α2A/α2C-adrenoceptor depletion accelerated wound contraction and re-epithelialization. A reduction in the number of neutrophils and macrophages was observed in the α2A/α2C-adrenoceptor knockout mice compared with wild-type mice. In addition, α2A/α2C-adrenoceptor depletion enhanced the levels of nitrite and hydroxyproline, and the protein expression of transforming growth factor-β and vascular endothelial growth factor. Furthermore, α2A/α2C-adrenoceptor depletion accelerated blood vessel formation and myofibroblast differentiation. The in vitro study demonstrated that skin fibroblasts isolated from α2A/α2C-adrenoceptor knockout mice exhibited enhanced cell migration, α-smooth muscle actin _protein expression and collagen deposition compared with wild-type skin fibroblasts. In conclusion, α2A/α2C-adrenoceptor deletion accelerates cutaneous wound healing in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call