Abstract

The physiological role of mono-ADP-ribosyl transferase (Arr) of Mycobacterium smegmatis, which inactivates rifampicin, remains unclear. An earlier study reported increased expression of arr during oxidative stress and DNA damage. This suggested a role for Arr in the oxidative status of the cell and its associated effect on DNA damage. Since reactive oxygen species (ROS) influence oxidative status, we investigated whether Arr affected ROS levels in M. smegmatis. Significantly elevated levels of superoxide and hydroxyl radical were found in the mid-log phase (MLP) cultures of the arr knockout strain (arr-KO) as compared those in the wild-type strain (WT). Complementation of arr-KO with expression from genomically integrated arr under its native promoter restored the levels of ROS equivalent to that in WT. Due to the inherently high ROS levels in the actively growing arr-KO, rifampicin resisters with rpoB mutations could be selected at 0 hr of exposure itself against rifampicin, unlike in the WT where the resisters emerged at 12th hr of rifampicin exposure. Microarray analysis of the actively growing cultures of arr-KO revealed significantly high levels of expression of genes from succinate dehydrogenase I and NADH dehydrogenase I operons, which would have contributed to the increased superoxide levels. In parallel, expression of specific DNA repair genes was significantly decreased, favouring retention of the mutations inflicted by the ROS. Expression of several metabolic pathway genes also was significantly altered. These observations revealed that Arr was required for maintaining a gene expression profile that would provide optimum levels of ROS and DNA repair system in the actively growing M. smegmatis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.