Abstract

Podospora anserina is a filamentous fungus with a limited lifespan. After a strain-specific period of growth, cultures turn to senescence and ultimately die. Here we provide evidence that the last step in the ageing of P. anserina is not accidental but programmed. In this study, PaAMID1, a homologue of a mammalian 'AIF-homologous mitochondrion-associated inducer of death', was analysed as a putative member of a caspase-independent signalling pathway. In addition, two metacaspases, PaMCA1 and PaMCA2, were investigated. While deletion of PaAmid1 as well as of PaMca2 was found to result in a moderate lifespan extension (59% and 78%, respectively), a 148% increase in lifespan was observed after deletion of PaMca1. Measurement of arginine-specific protease activity demonstrates a metacaspase-dependent activity in senescent but not in juvenile cultures, pointing to an activation of these proteases in the senescent stage of the life cycle. Moreover, treatment of juvenile wild-type cultures with hydrogen peroxide leads to a PaMCA1-dependent activity. The presented data strongly suggest that death of senescent wild-type cultures is triggered by an apoptotic programme induced by an age-dependent increase of reactive oxygen species during ageing of cultures and is executed after metacaspase activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.