Abstract

Spines are small protrusions arising from dendrites that receive most excitatory synaptic input in the brain. Dendritic spines represent dynamic structures that undergo activity-dependent adaptations, for example, during synaptic plasticity. Alterations of spine morphology, changes of spine type ratios or density have consequently been found in paradigms of learning and memory, and accompany many neuropsychiatric disorders. Polymorphisms in the gene encoding KIBRA, a protein present in kidney and brain, are linked to memory performance and cognition in humans and mouse models. Deletion of KIBRA impairs long-term synaptic plasticity and postsynaptic receptor recycling but no information is available on the morphology of dendritic spines in null-mutant mice. Here, we directly examine the role of KIBRA in spinous synapses using knockout mice. Since KIBRA is normally highly expressed in neocortex and hippocampus at juvenile age, we analyze synapse morphology in intact tissue and in neuronal cultures from these brain regions. Quantification of different dendritic spine types in Golgi-impregnated sections and in transfected neurons coherently reveal a robust increase of filopodial-like long protrusions in the absence of KIBRA. While distribution of pre- and postsynaptic marker proteins, overall synapse ultrastructure and density of asymmetric contacts were remarkably normal, electron microscopy additionally uncovered less perforated synapses and spinules in knockout neurons. Thus, our results indicate that KIBRA is involved in the maintenance of normal ratios of spinous synapses, and may thus provide a structural correlate of altered cognitive functions when this memory-associated molecule is mutated.

Highlights

  • Spines are actin-rich protrusions of the dendritic plasma membrane that play functional roles in biochemical compartmentalization, electrical filtering, integration of inputs, and plasticity of synapses (Bourne and Harris, 2008; Cingolani and Goda, 2008; Yuste, 2011)

  • While impaired synaptic plasticity with reduced hippocampal longterm potentiation (LTP) and long-term depression (LTD) was observed in adult mice at the cellular level (Makuch et al, 2011), it remained open from these investigations if there are any structural alterations at KIBRA-deficient synapses

  • To answer this important question, we studied the morphology of spinous synapses in the neocortex and hippocampus of KIBRA KO mice, both in brain tissue and in neuronal cultures, because KIBRA expression is normally high in these regions (Johannsen et al, 2008)

Read more

Summary

Introduction

Spines are actin-rich protrusions of the dendritic plasma membrane that play functional roles in biochemical compartmentalization, electrical filtering, integration of inputs, and plasticity of synapses (Bourne and Harris, 2008; Cingolani and Goda, 2008; Yuste, 2011). To subserve these roles, dendritic spines are dynamic structures that undergo morphological remodeling during development and in adaptation to sensory stimuli or in learning and memory (Bhatt et al, 2009; Holtmaat and Svoboda, 2009; Kasai et al, 2010; Lin and Koleske, 2010). KIBRA contains two amino terminal WW domains that are known to bind to PPxY motifs in target molecules, a C2 domain and a carboxyterminalbinding motif for PSD-95/Discs-large/ZO-1 (PDZ) modules

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call