Abstract

Overcoming carbon catabolite repression presents a significant challenge, largely due to the complex regulatory networks governing substrate catabolism, even in microbial cells. In this work, we have engineered an E. coli strain, which we have named X2G, that not only exhibits a reversed substrate preference for xylose over glucose, but also demonstrates an unusual ability to produce significant amounts of glucose. We obtained this non-intuitive phenotype by deleting four genes in upper central metabolism: ptsI, glk, pfkA, and zwf, which respectively encode Enzyme I of the phosphotransferase system, glucokinase, the dominant isozyme of phosphofructokinase, and glucose-6-phosphate dehydrogenase. The deletion of ptsI and glk blocks glucose uptake in E. coli, while the deletion of pfkA and zwf prevents the reassimilation of carbons through glycolysis and the oxidative pentose phosphate pathway, respectively. Our strain X2G is capable of converting 34% of the carbon it takes up as xylose into exported glucose. This corresponds to a glucose production rate of 1.4 ± 0.3 mmol/gDW/h at a specific growth rate of 0.25 ± 0.03 h−1, or about 1.8 ± 0.1 mM of glucose accumulated for every unit increase in OD600. Despite a 22% decrease in xylose uptake rate, a 33% decrease in biomass yield, and a 52% decrease in acetate production rate relative to the wild-type, the intracellular flux profile and cofactor allocation of X2G remain largely unperturbed, as elucidated through 13C-metabolic flux analysis. Further quantification of the pool sizes of key intracellular metabolites revealed that glucose secretion by X2G is likely driven by the substantial accumulation of intracellular glucose 6-phosphate, fructose 6-phosphate, glucose and fructose at levels greater than 20x of that in wild-type E. coli. Combined, our results shed light on the flexibility of central metabolism, and the opportunities this affords for producing value-added pentose- and hexose-derived products from lignocellulosic feedstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call