Abstract

Connexin45 (Cx45) is known to be expressed in the retina, but its functional analysis was problematic because general deletion of Cx45 coding DNA resulted in cardiovascular defects and embryonic lethality at embryonic day 10.5. We generated mice with neuron-directed deletion of Cx45 and concomitant activation of the enhanced green fluorescent protein (EGFP). EGFP labeling was observed in bipolar, amacrine, and ganglion cell populations. Intracellular microinjection of fluorescent dyes in EGFP-labeled somata combined with immunohistological markers revealed Cx45 expression in both ON and OFF cone bipolar cells. The scotopic electroretinogram of mutant mice revealed a normal a-wave but a 40% reduction in the b-wave amplitude, similar to that found in Cx36-deficient animals, suggesting a possible defect in the rod pathway of visual transmission. Indeed, neurotransmitter coupling between AII amacrine cells and Cx45-expressing cone bipolar cells was disrupted in Cx45-deficient mice. These data suggest that both Cx45 and Cx36 participate in the formation of functional heterotypic electrical synapses between these two types of retinal neurons that make up the major rod pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.