Abstract

Although many functions of activating transcription factor 4 (ATF4) are identified, a role of ATF4 in the hypothalamus in regulating energy homeostasis is unknown. Here, we generated adult-onset agouti-related peptide neuron-specific ATF4 knockout (AgRP-ATF4 KO) mice and found that these mice were lean, with improved insulin and leptin sensitivity and decreased hepatic lipid accumulation. Furthermore, AgRP-ATF4 KO mice showed reduced food intake and increased energy expenditure, mainly because of enhanced thermogenesis in brown adipose tissue. Moreover, AgRP-ATF4 KO mice were resistant to high-fat diet-induced obesity, insulin resistance, and liver steatosis and maintained at a higher body temperature under cold stress. Interestingly, the expression of FOXO1 was directly regulated by ATF4 via binding to the cAMP-responsive element site on its promoter in hypothalamic GT1-7 cells. Finally, Foxo1 expression was reduced in the arcuate nucleus (ARC) of the hypothalamus of AgRP-ATF4 KO mice, and adenovirus-mediated overexpression of FOXO1 in ARC increased the fat mass in AgRP-ATF4 KO mice. Collectively, our data demonstrate a novel function of ATF4 in AgRP neurons of the hypothalamus in energy balance and lipid metabolism and suggest hypothalamic ATF4 as a potential drug target for treating obesity and its related metabolic disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call