Abstract

It has been suggested that the transcription factor ARNT/HIF1β is critical for maintaining in vivo glucose homeostasis and pancreatic beta cell glucose-stimulated insulin secretion (GSIS). Our goal was to gain more insights into the metabolic defects seen after the loss of ARNT/HIF1β in beta cells. The in vivo and in vitro consequences of the loss of ARNT/HIF1β were investigated in beta cell specific Arnt/Hif1β knockout mice (β-Arnt (fl/fl/Cre) mice). The only in vivo defects found in β-Arnt (fl/fl/Cre) mice were significant increases in the respiratory exchange ratio and in vivo carbohydrate oxidation, and a decrease in lipid oxidation. The mitochondrial oxygen consumption rate was unaltered in mouse β-Arnt (fl/fl/Cre) islets upon glucose stimulation. β-Arnt (fl/fl/Cre) islets had an impairment in the glucose-stimulated increase in Ca(2+) signalling and a reduced insulin secretory response to glucose in the presence of KCl and diazoxide. The glucose-stimulated increase in the NADPH/NADP(+) ratio was reduced in β-Arnt (fl/fl/Cre) islets. The reduced GSIS and NADPH/NADP(+) levels in β-Arnt (fl/fl/Cre) islets could be rescued by treatment with membrane-permeable tricarboxylic acid intermediates. Small interfering (si)RNA mediated knockdown of ARNT/HIF1β in human islets also inhibited GSIS. These results suggest that the regulation of GSIS by the KATP channel-dependent and -independent pathways is affected by the loss of ARNT/HIF1β in islets. This study provides three new insights into the role of ARNT/HIF1β in beta cells: (1) ARNT/HIF1β deletion in mice impairs GSIS ex vivo; (2) β-Arnt (fl/fl/Cre) mice have an increased respiratory exchange ratio; and (3) ARNT/HIF1β is required for GSIS in human islets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.