Abstract

Apolipoprotein M (ApoM) is involved in lipid metabolism, and especially is involved in reverse cholesterol transport. However, the relationship between ApoM and apoptosis has been rarely reported. This study aimed to investigate the effect of ApoM on apoptosis using an ApoM gene-deficient mice (ApoM−/−) model and a mouse mesangial cell model with suppressed ApoM gene expression. First, we observed by transmission electron microscopy that mitochondrial damage and endoplasmic reticulum stress were abnormally altered in the kidneys of ApoM−/− mice compared with wild-type mice, showing mitochondrial swelling, vacuolization, myeloid changes, and expansion of the rough endoplasmic reticulum. At the molecular level, the expression of pro-apoptotic related proteins such as AIF, Bax, chop, clever-caspase 3, clever-caspase 7, clever-caspase 9, and clever-caspase 12 increased, and the expression of anti-apoptotic protein Bcl-2 decreased. Secondly, by interfering with the expression of the ApoM gene in mouse mesangial cells, we found that, compared with the control group (NC-si), the cells of the experimental group (siApoM) showed decreased cell viability, nuclear chromatin condensation, nuclear lysis, and an increased proportion of early apoptotic cells. The results in cells at the molecular level were consistent with those at the tissue level. These data indicated that the deletion of the ApoM gene led to upregulation of apoptosis in mouse kidney tissues and mesangial cells through the mitochondrial and endoplasmic reticulum pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.