Abstract

Multiple freeze-thaw cycles are common in alpine, polar and temperate habitats. We investigated the effects of five consecutive cycles of approx. -5 degrees C on the freeze-tolerant larvae of Pringleophaga marioni Viette (Lepidoptera: Tineidae) on sub-Antarctic Marion Island. The likelihood of freezing was positively correlated with body mass, and decreased from 70% of caterpillars that froze on initial exposure to 55% of caterpillars that froze on subsequent exposures; however, caterpillars retained their freeze tolerance and did not appear to switch to a freeze-avoiding strategy. Apart from an increase in gut water, there was no difference in body composition of caterpillars frozen 0 to 5 times, suggesting that the observed effects were not due to freezing, but rather to exposure to cold per se. Repeated cold exposure did not result in mortality, but led to decreased mass, largely accounted for by a decreased gut mass caused by cessation of feeding by caterpillars. Treatment caterpillars had fragile guts with increased lipid content, suggesting damage to the gut epithelium. These effects persisted for 5 days after the final exposure to cold, and after 30 days, treatment caterpillars had regained their pre-exposure mass, whereas their control counterparts had significantly gained mass. We show that repeated cold exposure does occur in the field, and suggest that this may be responsible for the long life cycle in P. marioni. Although mean temperatures are increasing on Marion Island, several climate change scenarios predict an increase in exposures to sub-zero temperatures, which would result in an increased generation time for P. marioni. Coupled with increased predation from introduced house mice on Marion Island, this could have severe consequences for the P. marioni population.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.