Abstract

Deleted in malignant brain tumors 1 (DMBT1) belongs to the scavenger receptor cysteine-rich superfamily of proteins and is implicated in innate immunity, cell polarity, and differentiation. Here we studied the role of DMBT1 in endothelial cells. DMBT1 was secreted into the extracellular matrix (ECM) by endothelial cells in vitro and in situ and the presence of DMBT1 in the ECM increased endothelial cell adherence. Endothelial cell-derived DMBT1 associated with galectin-3 (coprecipitation), and human recombinant DMBT1 bound EGF, vascular endothelial growth factor and Delta-like (Dll) 4 (specific ELISAs). Compared to cells from wild-type mice, endothelial cells from DMBT1(-/-) mice demonstrated reduced migration, proliferation, and tube formation. In vivo recovery from hindlimb ischemia was attenuated in DMBT1(-/-) animals as was vascular endothelial growth factor -induced endothelial sprouting from isolated aortic rings; the latter response could be rescued by the addition of recombinant DMBT1. The Notch pathway is involved in multiple aspects of vascular development, including arterial-venous differentiation and we found that endothelial cells from DMBT1(-/-) mice expressed more EphrinB2 than cells from wild-type mice. Levels of Dll1, Dll4, Hes1, Hey1, and EphB4, on the other hand, were decreased. Taken together, the results of this study indicate that DMBT1 functions as an important endothelium-derived ECM protein that is able to bind angiogenic factors and promote adhesion, migration, proliferation, and angiogenesis as well as vascular repair. Mechanistically, DMBT1 interacts with galectin-3 and modulates the Notch signaling pathway as well as the differential expression of ephrin-B2 and EphB4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.