Abstract

Epistemic planning based on Dynamic Epistemic Logic (DEL) allows agents to reason and plan from the perspective of other agents. The framework of DEL-based epistemic planning thereby has the potential to represent significant aspects of Theory of Mind in autonomous robots, and to provide a foundation for human-robot collaboration in which coordination is achieved implicitly through perspective shifts. In this paper, we build on previous work in epistemic planning with implicit coordination. We introduce a new notion of indistinguishability between epistemic states based on bisimulation, and provide a novel partition refinement algorithm for computing unique representatives of sets of indistinguishable states. We provide an algorithm for computing implicitly coordinated plans using these new constructs, embed it in a perceive-plan-act agent loop, and implement it on a robot. The planning algorithm is benchmarked against an existing epistemic planning algorithm, and the robotic implementation is demonstrated on human-robot collaboration scenarios requiring implicit coordination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.