Abstract
The temporal contingency of feedback is an essential requirement of successful human-computer interactions. The timing of feedback not only affects the behavior of a user but is also accompanied by changes in psychophysiology and neural activity. In three fMRI experiments we systematically studied the impact of delayed feedback on brain activity while subjects performed an auditory categorization task. In the first fMRI experiment, we analyzed the effects of rare and thus unexpected delays of different delay duration on brain activity. In the second experiment, we investigated if users can adapt to frequent delays. Therefore, delays were presented as often as immediate feedback. In a third experiment, the influence of interaction outage was analyzed by measuring the effect of infrequent omissions of feedback on brain activity. The results show that unexpected delays in feedback presentation compared to immediate feedback stronger activate inter alia bilateral the anterior insular cortex, the posterior medial frontal cortex, the left inferior parietal lobule and the right inferior frontal junction. The strength of this activation increases with the duration of the delay. Thus, delays interrupt the course of an interaction and trigger an orienting response that in turn activates brain regions of action control. If delays occur frequently, users can adapt, delays become expectable, and the brain activity in the observed network diminishes over the course of the interaction. However, introducing rare omissions of expected feedback reduces the system’s trustworthiness which leads to an increase in brain activity not only in response to such omissions but also following frequently occurring and thus expected delays.
Highlights
The livelong experience of humans from interactions with other humans has led to expectations regarding the general rules of communication that are automatically applied to interactions with technical systems
According to a previous study [8] we expected to find stronger activity in a network of brain regions that comprise the posterior medial frontal cortex, anterior insula, inferior frontal gyrus, and inferior parietal lobule in response to delayed feedback compared to immediate feedback
We found stronger activation by delayed feedback most prominent in the left and right anterior insular cortex, in the posterior medial frontal cortex, the left inferior parietal lobule (LPI), and in the right inferior frontal junction (IFJ)
Summary
The livelong experience of humans from interactions with other humans has led to expectations regarding the general rules of communication that are automatically applied to interactions with technical systems. One such fundamental rule is the expectation of the sender to obtain feedback that a message has been received, i.e. the subjective sense of completion of an action [1]. While in human conversation eye contact may already satisfy this expectation, technical systems are usually not equipped with comparable competences and must even more so ensure immediate responses to indicate that a users’ action has been processed. PLOS ONE | DOI:10.1371/journal.pone.0146250 January 8, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.