Abstract
In addition to the rate-distortion (R-D) behavior, in a real-time wireless video communication system, the end-to-end delay would also significantly affect the overall video reception quality. To analyze, control, and optimize the R-D behavior under the end-to-end delay constraint, in this paper we extend the traditional R-D optimization (RDO) for the wireless video communication system and formulate a novel delay-RDO-based rate control problem, by investigating the allocation of end-to-end delay to different delay components. It aims at minimizing the average total end-to-end distortion under the transmission rate and end-to-end delay constraints, by a joint selection of both the source coding and the channel coding parameters. The wireless channel is represented by a finite-state Markov channel model characterizing the time-varying process and predicting the future channel condition. As applicable solutions, a practical algorithm based on the Lagrange multiplier approaches, Karush-Kuhn-Tucker conditions, and sequential quadratic programming methods is developed. The experimental results demonstrate the superiority of the proposed algorithm over the existing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.