Abstract
Powered lower limb prostheses can assist users in a variety of ambulation modes by providing knee and/or ankle joint power. This study's goal was to develop a flexible control system to allow users to perform a variety of tasks in a natural, accurate, and reliable way. Six transfemoral amputees used a powered knee-ankle prosthesis to ascend/descend a ramp, climb a 3- and 4-step staircase, perform walking and standing transitions to and from the staircase, and ambulate at various speeds. A mode-specific classification architecture was developed to allow seamless transitions at four discrete gait events. Prosthesis mode transitions (i.e., the prosthesis' mechanical response) were delayed by 90 ms. Overall, users were not affected by this small delay. Offline classification results demonstrate significantly reduced error rates with the delayed system compared to the non-delayed system (p < 0.001). The average error rate for all heel contact decisions was 1.65% [0.99%] for the non-delayed system and 0.43% [0.23%] for the delayed system. The average error rate for all toe off decisions was 0.47% [0.16%] for the non-delayed system and 0.13% [0.05%] for the delayed system. The results are encouraging and provide another step towards a clinically viable intent recognition system for a powered knee-ankle prosthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Systems and Rehabilitation Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.