Abstract
The stability of a linear oscillator with delayed state feedback driven by parametric Gaussian white noise is studied in this paper. The first and second order moment equations of the system response are derived by using moment method and Itô differential rule. Based on the moment equations, the delay-independent stable conditions of both moments are proposed: For the first order moment, the sufficient and necessary condition that guarantee delay-independent stability is identified to that of the deterministic system; for the second order moment, the sufficient condition that ensure delay-independent stability depends on noise intensity. The theoretical results are also illustrated with numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.