Abstract

Herein, the structural, optical and thermoluminescence properties of Cr doped Zn2TiO4 are explored extensively for a possible application in bioimaging. All the samples show prominent luminescence at wavelengths 712 and 716 nm, which correspond to Cr R and N2-lines, respectively. These R and N2 lines correspond to the presence of Cr3+ in undistorted and distorted sites. The excitation spectra of all the samples possess at least five different bands at 616, 440, 388, 330 and 283 nm. The persistent luminescence is observed upon excitation at all these wavelengths, suggesting the existence of both localized and delocalized mechanisms. The charges can be easily stored in deeper traps (trap depth > 1.0 eV) upon localized excitation with green and red light sources. However, upon excitation at wavelengths 254 and 365 nm, these traps were found empty when thermoluminescence glow curves were recorded immediately after excitation. Furthermore, it was observed that the trapping in these deeper traps through the delocalized band is possible when a delay in the thermoluminescence measurement is pursued. We attribute the possible reason for such delayed tunneling to the higher probability of retrapping than the recombination process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.