Abstract
Understanding the response of predators to ecological change at multiple temporal scales can elucidate critical predator-prey dynamics that would otherwise go unrecognized. We performed compound-specific nitrogen stable isotope analysis of amino acids on 153 harbor seal museum skull specimens to determine how trophic position of this marine predator has responded to ecosystem change over the past century. The relationships between harbor seal trophic position, ocean condition, and prey abundance, were analyzed using hierarchical modeling of a multi-amino-acid framework and applying 1, 2, and 3years temporal lags. We identified delayed responses of harbor seal trophic position to both physical ocean conditions (upwelling, sea surface temperature, freshwater discharge) and prey availability (Pacific hake, Pacific herring, and Chinook salmon). However, the magnitude and direction of the trophic position response to ecological changes depended on the temporal delay. For example, harbor seal trophic position was negatively associated with summer upwelling but had a 1-year delayed response to summer sea surface temperature, indicating that some predator responses to ecosystem change are not immediately observable. These results highlight the importance of considering dynamic responses of predators to their environment as multiple ecological factors are often changing simultaneously and can take years to propagate up the food web.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.