Abstract
We first study stabilization of heat equation with globally Lipschitz nonlinearity. We consider the point measurements with constant delay and use spatial decomposition. Inspired by recent developments in the area of ordinary differential equations (ODEs) with time-delays, for the stability analysis, we suggest an augmented Lyapunov functional depending on the state derivative that is based on Legendre polynomials. Global exponential stability conditions are derived in terms of linear matrix inequalities (LMIs) that depend on the degree N of Legendre polynomials. The stability conditions form a hierarchy of LMIs: if the LMIs hold for N, they hold for N+1. The dual observer design problem with constant delay is also formulated. We further consider stabilization of Korteweg–de Vries–Burgers (KdVB) equation using the point measurements with constant delay. Due to the third-order partial derivative in KdVB equation, the Lyapunov functionals that depend on the state derivative are not applicable here, which is different from the case of heat equation. We suggest a novel augmented Lyapunov functional depending on the state only that leads to improved regional stability conditions in terms of LMIs. Finally, numerical examples illustrate the efficiency of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.