Abstract

The mechanism of spinal cord injury has been thought to be related with tissue ischemia, and spinal motor neuron cells are suggested to be vulnerable to ischemia. To evaluate the mechanism of such vulnerability of motor neurons, we attempted to make a reproducible model for spinal cord ischemia. Using this model, cell damage was histologically analyzed. Detection of ladders of oligonucleosomal DNA fragment was investigated with gel electrophoresis up to 7 days of the reperfusion. Time course expression of Fas antigen, identified as a apoptosis-regulating molecules, was also assessed in rabbit spinal cord following transient ischemia. Spinal cord sections from animals sacrificed at 8 h, 1 day, 2 days, and 7 days following 15-min ischemia were immunohistochemically evaluated using monoclonal antibodies for Fas antigen. Following 15-min ischemia, the majority of motor neuron showed selective cell death at 7 days of reperfusion. Typical ladders of oligonucleosomal DNA fragments were detected at 2 days of reperfusion. Immunoreactivity of Fas antigen were induced at 8 h to 1 day of reperfusion selectively in motor neuron cells. The expression of Fas antigen may be related to the activation of apoptosis signal in motor neuron cells after spinal cord ischemia in rabbits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.