Abstract

In this paper, we propose a new and simple control strategy for gait assistance with a hip exoskeleton robot. This controller is based on the time delayed, self-feedback known for stabilizing oscillatory systems under certain conditions. In this controller, there are no separate estimators for the gait phase nor the environment, yet the controller can be generalized to operate under various walking conditions (e.g., stair and ramp walking). We first define a state variable representing the current leg's movement with hip joint angles. A simple assistance control can be described in closed-loop form with the delayed state feedback. By assigning the appropriate time-delay and self-feedback gain, we can generate assistive torques stably under the interaction between human and exoskeleton. The controller provides immediate and smooth assistance to user movement by reflecting the change of leg motion at every control period. The proposed joint-angle-based delayed-feedback assistance controller can operate under various walking speeds and environmental changes (e.g., stairs and ramps) without the need for additional sensors, computational processing, and parameter adjustment. Using a simple leg swing model, we perform a stability analysis under a simplified condition to provide insights into the effects of the time-delayed feedback in oscillatory systems. Then, we experimentally validate the efficacy of the proposed assistance controller by measuring the metabolic energy expenditure for level treadmill walking. We also test and analyze the generated assistive torques and power under the different walking conditions to show the generalizability of the controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call