Abstract

Bisphenol A (BPA) is a synthetic endocrine-disrupting chemical of high prevalence in the environment, which may affect the function of the hypothalamic-pituitary-testis (HPT) axis in adult rats. The aim of the present study was to evaluate whether exposure to BPA during hypothalamic sexual differentiation at doses below the reproductive no observable adverse effect level of the World Health Organization causes changes in the regulation of the HPT axis. For this, 0.5 or 5mgkg-1 BPA was injected subcutaneously to the mothers from gestational day 18 to postnatal day (PND) 5. In adulthood (PND90), the mRNA expression of genes related to HPT axis was evaluated in hypothalamus, pituitary and testis. Hypothalamic expression of gonadotrophin-releasing hormone (Gnrh) and estrogen receptor 2 (Esr2) mRNA was increased in both BPA-treated groups compared to control group. In the pituitary, follicle stimulating hormone beta subunit (Fshb) and androgen receptor (Ar) mRNA expression was increased compared to control group in rats treated with 0.5mgkg-1 of BPA, whereas estrogen receptor 1 (Esr1) mRNA expression was only increased in the group treated with 5mgkg-1of BPA, compared to control group. In the testis, there was increased expression of FSH receptor (Fshr) and inhibin beta B subunit (Inhbb) transcripts only in rats treated with 0.5mgkg-1 of BPA. Serum testosterone and LH concentrations were increased in the group treated with 5mgkg-1of BPA. The results of the present study demonstrate for the first time that perinatal exposure to low doses of BPA during the critical period of hypothalamic sexual differentiation modifies the activity of the HPT axis in the offspring, with consequences for later life in adult rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call