Abstract

A delayed response of the winter North Atlantic oscillation (NAO) to the 11-year solar cycle has been observed and modeled in recent studies. However, the mechanisms creating this 2−4- year delay to the solar cycle have still not been well-understood. This study examines the effects of the 11-year solar cycle and the resulting modulation in the strength of the winter stratospheric polar vortex. A coupled atmosphere–ocean general circulation model is used to simulate these effects by introducing a mechanis- tic forcing in the stratosphere. The intensified stratospheric polar vortex is shown to induce positive and negative ocean temperature anomalies in the North Atlantic Ocean. The positive ocean tem- perature anomaly migrated northward and was amplified when it approached an oceanic frontal zone approximately 3 years after the forcing became maximum. This delayed ocean response is similar to that observed. The result of this study supports a previ- ous hypothesis that suggests that the 11-year solar cycle signals on the Earth’s surface are produced through a downward penetration of the changes in the stratospheric circulation. Furthermore, the spatial structure of the signal is modulated by its interaction with the ocean circulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.