Abstract

The effect of 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow on millisecond delayed light emission from chloroplasts has been compared to the effect on subchloroplast particles. Non-cyclic electron flow of both chloroplasts and subchloroplast particles was blocked with 3-(3,4-dichlorophenyl)-1,1-dimethylurea. 2,3,5,6-tetramethyl p-phenylenediamine-catalyzed cyclic electron flow increased the millisecond delayed emission by 2–4 times in both chloroplasts and subchloroplast particles. Uncoupling conditions which collapse only the pH gradient component of the proton motive force reduced the 2,3,5,6-tetramethyl p-phenylenediamine stimulation of delayed light in chloroplasts but not in particles. The 2,3,5,6-tetramethyl p-phenylenediamine stimulation of delayed light in particles was sensitive to uncoupling conditions which are presumed to destroy the transmembrane potential. Energy transfer inhibitors were without effect on the 2,3,5,6-tetramethyl p-phenylenediamine stimulation in both chloroplasts and particles. The 2,3,5,6-tetramethyl p-phenylenediamine stimulation of millisecond delayed emission appears to reflect the particular form of the proton motive force; in chloroplasts it seems to be correlated with the proton concentration gradient, whereas in particles it is more closely correlated with the transmembrane potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call