Abstract

Abstract Significant anomalies in frequency of summer extreme hot days (SEHDs) are broadly observed in the Asian monsoon region (AMR) in the post-ENSO summers. The delayed ENSO impacts are mainly conveyed by provoking the Indo-western Pacific Ocean capacitor (IPOC) effect that maintains the anomalous anticyclone in the western North Pacific. The related diabatic heating anomaly can trigger the westward-propagating Rossby wave to the Indian subcontinent, which increases the geopotential heights, reduces the cloud cover, and thus increases the seasonal surface temperature and SEHD frequency in the southern AMR. Besides, the reduced atmospheric moisture in the western North Pacific hinders the northward propagation of intraseasonal oscillation (ISO) and modulates the occurrence frequency of individual ISO phases, contributing to the significantly increased/decreased SEHDs in eastern China/Hokkaido, Japan, in the post–El Niño summers. The 25-model-ensemble mean of CMIP6 historical runs can reproduce well the observed SEHD anomalies in the southern AMR in the post-ENSO summers mainly due to the realistic simulation of ENSO impacts on the seasonal surface temperature, although a large intermodel spread exists due to different strengths of IPOC effect in each model owing to model biases in the mean state of the eastern tropical Pacific, the ENSO variance, and teleconnection to the Indian Ocean. Furthermore, future projections under the SSP5-8.5 scenario show that the delayed ENSO impacts on the southern AMR remain stable under global warming via a similar mechanism as in the observations and historical runs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call