Abstract

Treatments that could extend the therapeutic window of opportunity for stroke patients are urgently needed. Early administration of hyperbaric oxygen therapy (HBOT) has been proven neuroprotective in the middle cerebral artery occlusion (MCAo) in rodents. Our aim was to determine: 1) whether delayed HBOT after permanent MCAo (pMCAo) can still convey neuroprotection and restorative cell proliferation, and 2) whether these beneficial effects rely on HBO-induced activation of protein phosphatase-1γ (PP1-γ) leading to a decreased phosphorylation and ubiquitination of CREB and hence its stabilization.The experiments were performed in one hundred thirty-two male Sprague–Dawley rats with the body weight ranging from 240 to 270g. Permanent MCAo was induced with the intraluminal filament occluding the right middle cerebral artery (MCA). In the first experiment, HBOT (2.5 ATA, 1h daily for 10days) was started 48h after pMCAo. Neurobehavioral deficits and infarct size as well as cyclic AMP response element-binding protein (CREB) expression and BrdU-DAB staining in the hippocampus and the peri-infarct region were evaluated on day 14 and day 28 post-MCAo. In the second experiment, HBOT (2.5 ATA, 1h) was started 3h after pMCAo. The effects of CREB siRNA or PP1-γ siRNA on HBO-induced infarct size alterations and target protein expression were studied. HBOT started with 48h delay reduced infarct size, ameliorated neurobehavioral deficits and increased protein expression of CREB, resulting in increased cell proliferations in the hippocampus and peri-infarct region, on day 14 and day 28 post-MCAo. In the acute experiment pMCAo resulted in cerebral infarction and functional deterioration and reduced brain expression of PP1-γ, which led to increased phosphorylation and ubiquitination of CREB 24h after MCAo. However HBOT administered 3h after ischemia reversed these molecular events and resulted in CREB stabilization, infarct size reduction and neurobehavioral improvement. Gene silencing with CREB siRNA or PP1-γ siRNA reduced acute beneficial effects of HBO. In conclusion, delayed daily HBOT presented as potent neuroprotectant in pMCAo rats, increased CREB expression and signaling activity, and bolstered regenerative type cell proliferation in the injured brain. As shown in the acute experiment these effects of HBO were likely to be mediated by reducing ubiquitin-dependent CREB degradation owing to HBO-induced activation of PP1γ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.