Abstract

Matrix metalloproteinase (MMP) inhibition can potentially prevent hemorrhagic transformation following cerebral infarction; however, delayed-phase MMP activity is also necessary for functional recovery after experimental stroke. We sought to identify potential mechanisms responsible for the impaired recovery associated with subacute MMP inhibition in a transient middle cerebral artery occlusion model of focal ischemia in CD rats. Gelatinase inhibition was achieved by intracerebral injection of the Fn-439 MMP inhibitor 7 days after stroke. Treatment efficacy was determined on day 9 by in situ gelatin zymography. The peri-infarct cortex was identified by triphenyl tetrazolium chloride staining, and tissue samples were dissected for TaqMan array gene-expression study. Of 84 genes known to influence poststroke regeneration, we found upregulation of mRNA for the reticulon 4 receptor (Rtn4r), a major inhibitor of regenerative nerve growth in the adult CNS, and borderline expression changes for 3 additional genes (DCC, Jun, and Ngfr). Western blot confirmed increased Rtn4r protein in the peri-infarct cortex of treated animals, and double immunolabeling showed colocalization primarily with the S100 astrocyte marker. These data suggest that increased Rtn4 receptor expression in the perilesional cortex may contribute to the impaired regeneration associated with MMP inhibition in the subacute phase of cerebral infarction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.