Abstract

We evaluated the dissociation of isolated gas-phase nucleobase molecules induced by mega electron volt (MeV)-energy ions to gain fundamental insights into the reactions of nucleobases upon fast ion irradiation. We studied five nucleobase molecules-adenine, guanine, cytosine, thymine, and uracil-as gas-phase targets. We compared the fragmentation patterns obtained from carbon ion impacts with those obtained from proton impacts to clarify the effect of heavy ion irradiation. We also compared the results with electron impact and photoionization results. In addition, we identified several delayed fragmentation pathways by analyzing the correlation between fragment pairs generated from singly and doubly charged intermediate ions. To determine the lifetimes of delayed fragmentation from singly charged intermediate ions, we evaluated the detection efficiencies of the microchannel plate detector for the neutral fragment HCN as a function of kinetic energy using a new methodology. As the first demonstration of this method, we estimated the lifetimes of C5H5N5+ generated by 1.2-MeV C+ and 0.5-MeV H+ collisions to be 0.87 ± 0.43 and 0.67 ± 0.09 µs, respectively. These lifetimes were approximately one order of magnitude longer than those of the doubly charged intermediate ion C5H5N52+.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call