Abstract
Delayed fluorescence from bacteriochlorophyll in Chromatium vinosum chromatophores was studied at room temperature and under intermittent illuminations. The decay of delayed fluorescence was constituted of two components; a fast component decayed with a half time of about 8 ms, a slow one decayed in parallel with the reduction of photooxidized bacteriochlorophyll ( P +) with a half time of 100–200 ms. The biphasic decay of delayed fluorescence indicated that a rapid equilibrium was established between the primary electron acceptor and the secondary acceptor. In the presence of o-phenanthroline, the time course of the decay of delayed fluorescence was identical with that of the reduction of P + in reaction center-rich subchromatophore particles, although they did not necessarily coincide with each other in “intact” chromatophores. The intensity of the slow component was increased and the decay was accelerated at basic pH values. Reagents that dissipate the proton gradient across the chromatophore membranes such as carbonylcyanide m-chlorophenylhydrazone (CCCP) and nigericin accelerated the decay of the slow component. These effects are probably resulting from changes in internal pH of chromatophore vesicles. Reagents that dissipate the membrane potential such as CCCP and valinomycin decreased the intensity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.