Abstract

1. Synaptic interactions between identified neurons in the flight system of the locust were investigated by the use of standard intracellular recording and staining techniques. The intent was to determine the distribution and functional significance of delayed excitatory connections, which have been previously described. 2. For one inhibitory connection it was demonstrated that subthreshold depolarization of the presynaptic neuron was sufficient to cause release of transmitter at the synapse. This established the existence of graded interactions between spiking flight neurons. 3. Three inhibitory interneurons were found to cause delayed excitatory responses in several other neurons. Often these were coupled with direct inhibitory connections between the same pre- and postsynaptic neurons, resulting in an inhibitory/excitatory (I/E) postsynaptic potential (PSP). The two phases of this PSP were variable. 4. Delayed excitatory connections appeared powerful while the flight system was inactive. However, these connections were disabled during flight rhythms at the phase when the presynaptic neuron was depolarized and firing action potentials. This was likely to be due to the nature of the disynaptic disinhibitory interaction being via (an) intervening neuron(s) with oscillating membrane potentials and thresholds for release of transmitter. 5. Thus connections demonstrated when flight rhythms were not expressed changed their character during flight rhythms. The delayed excitatory connections in this system probably reflect complex circuits of inhibition mediated by graded interactions and have little functional significance as phenomena in their own right.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call