Abstract

The in vitro motility of fluorescent actin filaments over heavy meromyosin (HMM) was studied in the presence of the nonionic detergent Triton X-100. Below 0.004% Triton X-100 concentration, motility was not affected. Above 0.007%, motility was not observed because actin filaments were dissociated from HMM. In the Triton X-100 concentration range of 0.004–0.007%, the sliding actin filaments dissociated from HMM with a delay. The dissociation delay time decreased with increasing Triton X-100 concentration, increasing ATP (adenosine-5′-triphosphate) concentration, and increasing temperature. The delayed acto-HMM dissociation was absent when weak-binding kinetic intermediates of the myosin ATPase cycle (M.ATP and M.ADP-P i) were used. The presence of sliding movement was necessary to evoke the delayed acto-HMM dissociation. The acto-HMM dissociation delay was independent of actin filament length. For a given Triton X-100 concentration, the dissociation delay time was found to be inversely proportional to sliding velocity, indicating that actin filaments travel a more or less constant distance prior to dissociation from HMM. The actin-activated HMM ATPase activity was not inhibited by Triton X-100; rather, it was slightly enhanced. The results imply the presence of a motility-associated conformational change in acto-HMM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.