Abstract

Supersonic inlet buzz in a rectangular, mixed-compression inlet has been simulated on a 20 x 10 6 points mesh using the delayed detached-eddy simulation method, a version of detached-eddy simulation that ensures the attached boundary layers are treated using Reynolds-averaged Navier-Stokes equations. The results are compared with experimental data obtained during a previous campaign of wind-tunnel experiments. The comparison of unsteady data is performed thanks to phase averages, Fourier transforms, and wavelet transforms. The buzz observed at Mach 1.8, which occurred at a frequency of 18 Hz, is well reproduced. The shock oscillations, as well as the different flow features experimentally observed, are present in the simulation. The buzz frequency, as well as higher frequencies existing in the experimental pressure signals, are correctly predicted. The data issued from the simulation (time history of pressure fluctuations, pseudo-Schlieren, and three-dimensional visualizations) allow a better investigation of the inlet flowfield during buzz and a detailed description and physical analysis of this phenomenon. A description and an explanation of the mechanism at the origin of secondary oscillations that occur at a higher frequency during buzz are proposed. The crucial role of acoustic waves moving through the duct is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.