Abstract
Slowed balance and mobility after stroke have been well-characterized. Yet the effects of unilateral cortical lesions on whole-body neuromechanical control is poorly understood, despite increased reliance on cortical resources for balance and mobility with aging. Objective. We tested whether individuals post stroke show impaired cortical responses evoked during reactive balance, and the effect of asymmetrical interlimb contributions to balance recovery and the evoked cortical response. Using electroencephalography, we assessed cortical N1 responses evoked over fronto-midline regions (Cz) during backward support-surface perturbations loading both legs and posterior-lateral directions that preferentially load the paretic or nonparetic leg in individuals' post-stroke and age-matched controls. We tested relationships between cortical responses and clinical balance/mobility function, as well as to center of pressure (CoP) rate of rise (RoR) during balance recovery. Cortical N1 responses were smaller and delayed after stroke (P < .047), regardless of perturbation condition. In contrast to controls, slower cortical response latencies associated with lower clinical function in stroke (Mini Balance Evaluation Systems Test: r = -.61, P = .007; Timed-Up-and-Go: r = .53, P = .024; walking speed: r = -.46, P = .055). Paretic-loaded balance recovery revealed slower CoP RoR (P = .012) that was associated with delayed cortical response latencies (r = -.70, P = .003); these relationships were not present during bilateral and nonparetic-loaded conditions, nor in the older adults control group. Individuals after stroke may be limited in their balance ability by the slowed speed of their cortical responses to destabilization. In particular, paretic leg loading may reveal cortical response impairments that reflect reduced paretic motor capacity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.