Abstract
In this work, we study the combination of adaptive filters in colored noise environments. First, a combination framework using delayed weights is introduced to tackle the colored noise. Based on this, delayed convex and affine combinations of two LMS filters are developed, resulting in the so-called Dcvx-LMS and Daff-LMS algorithms. Then, the convergence behaviors of the two algorithms are investigated using standard mean-square deviation analysis. In addition, to speed up the convergence and reduce the computational complexity, we propose delayed combination with periodic feedback, delayed combined-step-size and block implementation methods. Finally, simulation results demonstrate the superiority of our algorithms over previously reported techniques in the presence of colored noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.