Abstract

Background and purposeThe aim was to evaluate whether adaptive NKG2C+ natural killer (NK) cells, characterized by enhanced antibody‐dependent cell cytotoxicity (ADCC), may influence time to B cell repopulation after rituximab treatment in multiple sclerosis (MS) patients.MethodsThis was a prospective observational study of MS patients treated with rituximab monitoring peripheral B cells for repeated doses. B cell repopulation was defined as CD19+ cells above 2% of total lymphocytes, classifying cases according to the median time of B cell repopulation as early or late (≤9 months, >9 months, respectively). Basal NK cell immunophenotype and in vitro ADCC responses induced by rituximab were assessed by flow cytometry.ResultsB cell repopulation in 38 patients (24 relapsing–remitting MS [RRMS]; 14 progressive MS) was classified as early (≤9 months, n = 19) or late (>9 months, n = 19). RRMS patients with late B cell repopulation had higher proportions of NKG2C+ NK cells compared to those with early repopulation (24.7% ± 16.2% vs. 11.3% ± 10.4%, p < 0.05), and a direct correlation between time to B cell repopulation and percentage of NKG2C+ NK cells (R 0.45, p < 0.05) was observed. RRMS cases with late repopulation compared with early repopulation had a higher secretion of tumor necrosis factor α and interferon γ by NK cells after rituximab‐dependent NK cell activation. The NK cell immunophenotype appeared unrelated to B cell repopulation in progressive MS patients.ConclusionsAdaptive NKG2C+ NK cells in RRMS may be associated with delayed B cell repopulation after rituximab, a finding probably related to enhanced depletion of B cells exerted by NK‐cell‐mediated ADCC, pointing to the use of personalized regimens with anti‐CD20 monoclonal antibody therapy in some patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call