Abstract
Hepatocyte growth factor (HGF) is a renotropic protein that elicits antifibrogenic activity by preventing the activation of matrix-producing myofibroblast cells in animal models of chronic renal diseases. However, whether a delayed administration of HGF can still attenuate renal fibrosis remains uncertain. In this study, we examined the therapeutic potential of exogenous HGF on an established renal interstitial fibrosis induced by unilateral ureteral obstruction (UUO). Three days after UUO, the obstructed kidneys displayed interstitial fibrotic lesions with characteristic features of an established renal fibrosis, as manifested by myofibroblast activation, fibronectin overexpression, interstitial matrix deposition, and transforming growth factor-beta1 upregulation. Beginning at this time point, administration of recombinant HGF into mice by intravenous injections for 11 days markedly suppressed the progression of renal interstitial fibrosis. HGF significantly suppressed renal alpha-smooth muscle actin expression, total kidney collagen contents, interstitial matrix components, such as fibronectin, and renal expression of transforming growth factor-beta1 and its type I receptor. Compared with the starting point (3 days after UUO), HGF treatment largely blunted the progression of myofibroblast accumulation and collagen deposition but did not reverse it. Delayed administration of HGF also suppressed the myofibroblastic transdifferentiation from tubular epithelial cells in vitro, as demonstrated by a decline in alpha-smooth muscle actin and fibronectin expression. These results suggest that exogenous HGF exhibits potent therapeutic effects on retarding the progression of an established renal fibrosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.