Abstract

AbstractThis paper is concerned with the problems of delay‐dependent stability and static output feedback (SOF) control of two‐dimensional (2‐D) discrete systems with interval time‐varying delays, which are described by the Fornasini‐Marchesini (FM) second model. The upper and lower bounds of delays are considered. Applying a new method of estimating the upper bound on the difference of Lyapunov function that does not ignore any terms, a new delay‐dependent stability criteria based on linear matrix inequalities (LMIs) is derived. Then, given the lower bounds of time‐varying delays, the maximum upper bounds in the above LMIs are obtained through computing a convex optimization problem. Based on the stability criteria, the SOF control problem is formulated in terms of a bilinear matrix inequality (BMI). With the use of the slack variable technique, a sufficient LMI condition is proposed for the BMI. Moreover, the SOF gain can be solved by LMIs. Numerical examples show the effectiveness and advantages of our results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.