Abstract
Network-based load frequency control (LFC) requires data transmission from the plant site to the control center and control center to the plant site. Communication delays resulting from an open communication network impart time-varying nature to network delay. This time-varying delay may debase the dynamic performance or instability of the LFC systems. Stability of the LFC system is investigated by Lyapunov–Krasovskii functional (LKF) analysis and linear matrix inequalities (LMIs) techniques. In this paper, a less conservative delay-dependent stability criterion is derived for the time-delay system by proper constructing of LKF and imposing tighter bounding of integral terms on time-derivative of LKF. Delay margin is obtained by solving proposed stability criterion for a time-delay LFC system equipped with a proportional-integral controller. The adequacy of the proposed result is confirmed using simulation studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.