Abstract
This article investigates the problem of robust stability for neural networks with time-varying delays and parameter uncertainties of linear fractional form. By introducing a new Lyapunov-Krasovskii functional and a tighter inequality, delay-dependent stability criteria are established in term of linear matrix inequalities (LMIs). It is shown that the obtained criteria can provide less conservative results than some existing ones. Numerical examples are given to demonstrate the applicability of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.