Abstract
This paper is devoted to investigating the robust stochastic exponential stability for reaction-diffusion Cohen–Grossberg neural networks (RDCGNNs) with Markovian jumping parameters and mixed delays. The parameter uncertainties are assumed to be norm bounded. The delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Some criteria for delay-dependent robust exponential stability of RDCGNNs with Markovian jumping parameters are established in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing Matlab LMI toolbox. Numerical examples are provided to demonstrate the efficiency of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.