Abstract

This article focuses on a novel two-level hierarchical decentralised coordinated control which consists of several local fuzzy power system stabilisers (LFPSSs) for each generator at the first level tuned by supervisory power system stabiliser (SPSS) at the secondary level for the transient stabilisation improvement of large power systems. First, in order to compensate the inherent nonlinear interconnections between subsystems in system dynamic model, a direct feedback linearisation compensator is proposed to act through the local excitation machine. Afterwards, the T–S fuzzy model-based decentralised LFPSS for each generator is designed. Then, for the purpose of improving dynamic performance, the SPSS is designed by using the remote signals from the wide area measurements system. However, there are unavoidable delays involved before the remote signals are received at the SPSS site or the control signals of SPSS are sent to the local systems. Taking consideration of the multiple delays, by using less conservative delay-dependent Lyapunov approach, the authors develop a delay-dependent H∞ robust control technique based on the decentralised coordinated control structure. Some sufficient conditions for the system stabilisation are presented in terms of linear matrix inequalities dependent only on the upper bounds of the time delays. Finally, the effectiveness of the proposed control scheme is demonstrated through simulation examples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call