Abstract

The problem of exponentially synchronizing class of delayed neural networks is studied. Both constant and time-varying delays are considered, to obtain the delay-dependent state feedback synchronization gain matrix. By means of the method of Lyapunov–Krasovskii functional, combined with linear matrix inequalities, exponential synchronization of the master–slave structure of neural networks is achieved. The delay interval is decomposed into multiple nonequidistant subintervals, on which Lyapunov–Krasovskii functionals are constructed. On the basis of these functionals, a new exponential synchronization condition, one that is time-delay dependent, is proposed in terms of linear matrix inequalities. A numerical example showing the effectiveness of the proposed method is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.