Abstract

This paper investigates the problem of global exponential stability for neutral systems with interval time varying delays and nonlinear perturbations. It is assumed that the state delay belongs to a given interval, which means that both the lower and upper bounds of the time-varying delay are available. The uncertainties under consideration are norm-bounded. Based on the Lyapunov–Krasovskii stability theory, delay-partitioning technique and lower bounds lemma, less conservative delay-dependent exponential stability criteria are derived in terms of linear matrix inequalities (LMIs) with fewer decision variables than the existing ones. Numerical examples are given to show the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call