Abstract

We propose a modified supervised learning algorithm for optical spiking neural networks, which introduces synaptic time-delay plasticity on the basis of traditional weight training. Delay learning is combined with the remote supervised method that is incorporated with photonic spike-timing-dependent plasticity. A spike sequence learning task implemented via the proposed algorithm is found to have better performance than via the traditional weight-based method. Moreover, the proposed algorithm is also applied to two benchmark data sets for classification. In a simple network structure with only a few optical neurons, the classification accuracy based on the delay-weight learning algorithm is significantly improved compared with weight-based learning. The introduction of delay adjusting improves the learning efficiency and performance of the algorithm, which is helpful for photonic neuromorphic computing and is also important specifically for understanding information processing in the biological brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.