Abstract

In cooperative networks using a decode-and-forward strategy, the multiple relays effectively transmit a distributed space-time code, the performance of which can be severely degraded when timing synchronization among the relays is not assured (e.g., in cases of broadcast to dispersed recipients or in networks without a shared, high-quality timing reference). Recent work by Xia and Hammons have investigated the design of distributed space-time codes that are delay tolerant, in the sense that full spatial diversity is achieved regardless of timing offsets. In general, the previously known space-time block codes belonging to the class of C-linear codes, however, which are important because they achieve full spatial diversity and admit near-optimal lattice decoding algorithms, are not delay tolerant. In this paper, we present a new family of such codes that are fully delay tolerant. The new codes generalize the threaded algebraic space-time (TAST) codes introduced by El Gamal and Damen. Like their brethren, the new distributed-TAST codes are effective and flexible, enabling use of different signaling constellations, transmission rates, numbers of transmit and receive antennas, and decoders of varying levels of complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.