Abstract

The paper is concerned with a stability analysis problem for neural networks with Markovian jumping parameters. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process, which are governed by a Markov process with discrete and finite state space. A new type of Markovian jumping matrix P i is introduced in this paper. The discrete delays are assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. Based on the new Lyapunov–Krasovskii functional, delay-interval dependent stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to demonstrate the lower conservatism and the effectiveness of the proposed LMI conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call