Abstract

There have been increasing interests in integrating cooperative diversity into Cognitive Radios (CRs). However, conventional cooperative diversity protocols require at least two randomly available idle timeslots or temporal spectrum holes for one transmission, thus leading to limited throughput and/or large latency. In this paper, we propose a novel cross-layer approach for efficient scheduling in CR systems with bursty secondary traffics. Specifically, cooperative beamforming is exploited for Secondary Users (SUs) to access busy timeslots or spatial spectrum holes without causing interference to primary users. We first propose a basic cooperative beaMforming and Automatic repeat request aided oppoRtunistic speCtrum scHeduling (MARCH) scheme to balance available spectrum resources, namely temporal and spatial spectrum holes, between the source and the relays. To analyze the proposed scheme, we develop a tandem queuing framework, which captures bursty traffic arrival, dynamic availability of spectrum holes, and time-varying channel fading. The stable throughput region and the average delay are characterized using a structured matrix-analytical method. We then obtain delay optimal scheduling schemes for various scenarios by jointly optimizing the scheduling parameters. Finally, we propose a modified scheme, MARCH-IR, which combines MARCH with Incremental Relay selection to further improve the system performance. Simulation results reveal that the proposed schemes provide significant Quality of Service (QoS) gains over conventional scheduling schemes that access only temporal spectrum holes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.