Abstract

An approach for timing simulation of bipolar ECL (emitter-coupled-logic) digital circuits is described. The approach is based on the development of a switch-level model of the transistor and on the representation of the circuit by a switch graph. The circuit is partitioned into subcircuits, and symbolic logic expressions are generated which represent the logic states of the nodes in terms of subcircuit inputs and initial conditions. Timing information is computed using an analytical delay model which relates outputs of a subcircuit to its input waveforms. The model includes the effects of the transistor SPICE parameter model as well as the circuit parameters. The combination of the switch-level graph model and the delay model provides fast and accurate timing simulation of ECL circuits. In addition, the switch-graph model provides a unified way for simulating BIMOS circuits. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.