Abstract

We study delay-induced synchronization transitions in small-world networks of bursting neurons with hybrid excitatory-inhibitory synapses. Numerical results show that transitions of the spatiotemporal synchrony of neurons can be induced not only by the variations of the information transmission delay but also by changing the probability of inhibitory synapses and the rewiring probability. The delay can either promote or destroy synchronization of neuronal activity in the hybrid small-world neuronal network. In particular, regions of synchronization and nonsynchronization appear intermittently as the delay increases. In addition, for smaller and higher probability of inhibitory synapses, the intermittent synchronization transition is relative profound, while for the moderate probability of inhibitory synapses, synchronization transition seems less profound. More importantly, it is found that a suitable rewired network topology can always enhance the synchronized neuronal activity if only the delay is appropriate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.